

Révisions sur l'exponentielle

Objectif:

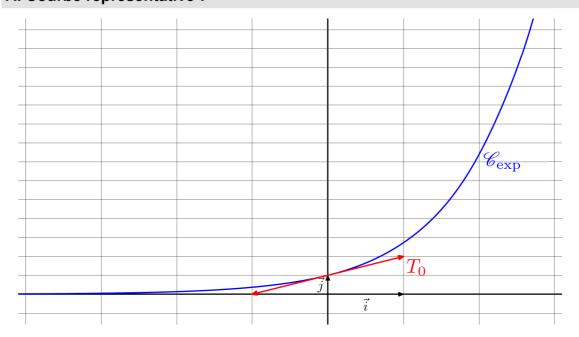
- Réactiver les connaissances acquises en classe de première sur le fonction exponentielle
- Se référer à son cours de première pour la démonstrations de ces propriétés et le détail de leur application
- Il n'y a pas d'exercices de préparation pour ce chapitre, référez-vous à des ouvrages de première si vous avez besoin de vous entraîner

1. Rappels de cours

Définition 2.1 L'unique solution de l'équation différentielle y'=y définie sur $\mathbb R$ et vérifiant y(0)=1 est appelée fontion exponentielle. Cette fonction est notée $\exp:x\mapsto\exp(x)$ ou $\exp:x\mapsto e^x$.

Remarque 2.1 $e \simeq 2,718281828$

A. Courbe représentative :

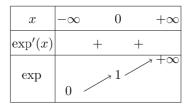


B. Signe:

Propriété 2.1 Pour tout $x \in \mathbb{R}$ on a $\exp(x) > 0$.

C. Variations:

La fonction exponentielle est, par définition, définie et dérivable sur \mathbb{R} donc elle est aussi continue sur \mathbb{R} . Pour tout $x \in \mathbb{R}$, $\exp'(x) = \exp(x) > 0$ (par définition et d'après la propriété 2.1); donc la fonction exponentielle est strictement croissante sur \mathbb{R} . On obtient donc :



D. Approximation affine en 0 :

L'équation de la tangente à $\mathscr{C}_{\mathrm{exp}}$ au point d'abscisse 0 est :

$$T_0: y = x + 1$$

E. Opérations algébriques :

Propriété 2.2 Pour tous x, y dans \mathbb{R} et tout $p \in \mathbb{Z}$:

$$e^{x+y} = e^x e^y; \quad e^{-x} = \frac{1}{e^x}; \quad e^{x-y} = \frac{e^x}{e^y}; \quad e^{px} = (e^x)^p$$

F. Équations, inéquations :

Propriété 2.3 Soit x et y deux réels.

$$e^x = e^y \iff x = y$$
 et $e^x < e^y \iff x < y$

G. Dérivation :

Vous avez vu en classe de première que :

Propriété 2.4 Pour tous réels a et b fixés, la fonction f définie sur ' \mathbb{R} par $f(x) = e^{ax+b}$ est dérivable sur \mathbb{R} et, pour tout réel x, $f'(x) = ae^{ax+b}$.

Nous verrons dans le chapitre 7 que plus généralement, l'on a :

Théorème 2.1 Soit u une fonction définie et dérivable sur un intervalle I. Soit $f: x \mapsto \mathrm{e}^{u(x)}$. La fonction f est dérivable sur I et pour $x \in I$ on a $f'(x) = \mathrm{e}^{u(x)} \times u'(x)$. On note aussi : $(\mathrm{e}^u)' = \mathrm{e}^u \times u'$.